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Summary

For robots to be more useful in flexible manufacturing and service applications, the controllers
must be able to handle more variable environments. On at least two levels, conventional methods
in robot control have problems dealing with high variability. At the movement level, conventional
dynamic control formulations cannot deal effectively with the highly variable dynamic inertial
interactions between multijointed robots and payloads. At the task level, the initial and final
positions for materials to be moved may change slightly but unexpectedly. We have developed
autonomous neural network controllers that learn from their own experience to deal with
environmental variability at these levels.

Our dynamic multijoint neural controller allows robots to leoa to move diverse payloads from
point to point without any knowledge of the robot structure or the gravitational environment. As
tested on a PUMA 260 robot that is directly-controlled by a PC-based host, the performance of our
controller in terms of final end-point accuracy and stability exceeds that of conventional dynamic
control methods and is comparable to recently developed algorithms that rely on a model of the
robot. Using sample payloads throughout the robot's range, the controller performs several
movements and automatically updates its control parameters after each movement.

For task level variability, we consider a more specific materials handling application that current
controllers cannot handle well: part insertion with unconstrained alignment. The main difficulty is
that the target hole for a part may not be in the expected position and/or orientation. Passive
compliant devices, currently available, provide only limited amounts of compliance and are part
specific. Using a six degree-of-freedom force/torque sensor for feedback on the wrist of our PUMA
260 robot, we developed an initial prototype of a neural network controller which learns to put a
peg into a hole using its own experience. It offers active compliance using the entire robot arm and
allows greater variability for the target hole position and orientation. Using a video tape
demonstration, Symbus Technology is actively pursuing customers that will help bring this
technology to market.
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1. Introduction

1.1 The General Materials Handling Problem: Environmental Variability

Most applications of robots are in highly constrained manufacturing environments where there is

a low degree of variability about where the materials are and where they are to be placed. To realize

this tightly-controlled environment, expensive customized tooling currently must be used. When

the manufacturing line changes, the retooling costs can be 80% of the total conversion cost. As a

result, there is a trend toward flexible manufacturing environments whereby more capable robot

controllers are needed to allow more variability in the workcell and thus reduce the amount of

customized tooling required for a particular application.

The issue of environmental variability is even more critical in the service robot industry. A service

robot would be handling materials in an environment that either cannot be modified at all or only

at great expense. Since a service robot would most likely be sharing this environment with other

active elements (such as people), the environment is highly variable with respect to the service

robot because it could change unexpectedly over time. For example, a fallen box could block its

path. A bin that the robot was supposed to fill with some material is still full from the previous day

because it was not emptied as expected. Thus the need for flexible controllers that can deal

effectively with varying environments is crucial for service robots.

1.2 Levels of Variability

With respect to the robot controller, the environmental variability can exist at several different

levels. At the lowest level, dynamic control issues are relevant. Simple movements can be done

with different payloads and varying speeds over time. The inertial qualities of the payload can

interact with the inertial dynamics of the multijoint robot arm to produce oscillations at the end

point of a movement, particularly at high speeds. A stable movement has no end-point oscillations.

Furthermore, the movement is accurate if the robot is stationary at the desired place at the desired

time. Over the robot's lifetime, friction in its joints will change, affecting the arm's inertial

properties and thus a movement's end-point stability. If another robot of the same type is used in

place of the original robot, both the accuracy and stability of the movements can be affected

because no two robots are exactly the same. At the robot level, variabilities in the robot and its

payload over time can result in poor movements due to the interaction of inertial dynamics.

At a higher level, a task which consists of several movements has sources of variability that are

external to the robot. Consider the assembly line task of part insertion. If either the part or its target

position is not in the expected position, the controller must compensate by generating a proper

corrective movement. The main problem for the controller in this case is establishing and
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maintaining calibration so that a sensed force/torque measurement of the new part position is

translated into the appropriate corrective movement.

1.3 Conventional Approaches to Dealing with Variability

Primarily two methods are used to deal with variability. The first method is to develop detailed

models of the process and how it might vary. The second method is to operate the process in a less-

than-optimal regime. The manner in which these two methods are implemented differs between the

robot and task levels.

At the robot level, detailed models of the robot kinematics and dynamics are used to control the

movement of the robot. However, due to variations between robots of the same type, robot-specific

calibration data must be provided for each robot. Because of the limitations of conventional control

algorithms, the robots are larger, heavier, and slower than they need to be in order to reduce

dynamic insabilities at the end-points of movements throughout the robot's movement range.

Larger robots need more space and power to operate, thus increasing their cost to run. Furthermore,

slower robots reduce process throughput.

At the higher task level, variability is reduced by having customized tooling to prevent parts and

their destinations from having variable positions. Part-specific feeders are also used to constrain
part presentation. However, these hardware methods are expensive to implement, particularly if the

parts will be changing over time. For variability problems with part insertion, primarily two work-

around methods are employed. In one method, if a part fails to be inserted on the first attempt, it is

jiggled randomly for a preset amount of time to see if it will fall into place. If it doesn't, the part is

discarded and a new one is tried. Alternatively, passive compliant devices can be used to hold the

part. Although these devices are not expensive, their usefulness is limited in the amount of

compliance they can provide and by the fact that they are still part specific.

1.4 Our Approach: Autonomous Neural Network Controllers

By contrast, our approach is to design controllers that do not require any models of the robots or

their environments. They are based on neural network technology and learn using their own

experience. Besides being able to handle variable environments more easily, this approach has the

additional advantage in that our neural network controllers can be used in other non-robotic control

applications which have the same inertial and variability issues, such as controlling temperature

and fluid flow.

After an initial training period, our neural network controllers can be put on-line while being

trained continuously to maintain calibration. In effect, the learning process generates a set of robot-
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specific customization data that can evolve as the environment changes. In this way, our neural

network controllers are autonomous. In order to adapt to new conditions, they only require the

ability to sense that new conditions are present Examples of new conditions are increased friction

in the joints of a robot (which can be sensed by a reduction in the expected speed of a known

movement) and a shifted pick-up location for a part (which can be sensed by a camera or proximity

sensors). The neural network controllers can accept any type of sensor input.

In this project, we developed two autonomous neural network controllers for two levels of

variability: robot and task. At the robot level, our dynamic multijoint neural controller can learn to

move a payload from one position to another (point-to-point) with a high degree of stability and
accuracy. By incorporating a sense of the payload to be moved, the controller can handle novel

payloads with every movement. For overall dynamic stability of the robot, the controller is

designed as a feedforward computed-torque formulation with simple position and velocity

feedback loops. Both the feedforward and feedback paths have adaptable governing parameters

which are fixed for any particular movement. These parameters are stored by the controller's neural

network. At the end of a movement, the stability and accuracy are sensed and an error signal is

generated to adapt the neural network so as to adjust these parameters in the appropriate way. The

dynamic multijoint neural controller is described in more detail in Section 2.1.

The same basic controller design is incorporated into our part insertion neural controller. This

controller focuses on task variability and utilizes force/torque sensations to provide active

compliance for assembling parts. Our sample task was to put a peg into a hole that could vary in

both its position and orientation. The role of the neural network in this case was to learn the

association between the force/torque sensations and the corresponding corrective movements that

would result in a successful insertion. This controller is discussed in Section 2.2.

1.5 Experimental Configuration

Our development platform was an industrial PUMA 260 robot, shown in Figure 1, that was
controlled directly by a PC-based host. Both autonomous neural network controllers were

developed and tested on this platform. The conventional UNIVAL or VAL II controller for the

PUMA 260 was not used here; the PC had direct control over the torque signals that were applied
to each joint. Optical encoders on each joint provided position feedback information for the PC. A

pneumatically-actuated parallel gripper was used to grasp payloads for moving and parts for

inserting. For the part insertion neural controller, a six degree-of-freedom (6-dot) force/torque

sensor was attached between the robot wrist and the gripper, to sense any contact force during part

insertion.
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Figure 1: Industrial PUMA 260 robot used for developing both
autonomous neural network controllers.

2. Autonomous Neural Network Controllers

2.1 Dynamic Multijoint Neural Controller

2.1.1 Design Description

For a robot with N joints, the dynamic multijoint control module in the neural network controller

is composed of N local joint controllers, one of which is shown in Figure 2. Each local joint

controller operates in two modes, posture and movement. The role of the posture mode is to keep
the ann at its desired position, irrespective of gravity and payload. If a new desired position is set,

the posture mode will move the arm there with accuracy but not at the desired speed or with

stability. Movement mode is responsible for establishing the speed needed for on-time arrival and

the end-point stability. These modes operate in parallel (additively) with the movement mode being
activated when the desired position changes.

The local joint controller has four inputs:

1. The initial position of each joint in the arm in joint space (as opposed to physical

space). These angles will be denoted by xio.

2. The desired position for each joint in joint space, denoted by Xid.

3. The desired movement time, Td.
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4. A measure of the current payload, PL. This measure can be subjective and only

needs to be repeatable and monotonic with the payload's actual weight.

The first two inputs are used directly by the local joint controller and the second two inputs are used

only to compute parameter values.

To perform a movement, an internal estimate of the position and velocity is generated for the ith

joint according to

dlft,) = T. sgn (xid -- xiO)u(.i#t)),()4 . t)=~(1)
dt I I

Vi(t) = Mia [.R.(t) - Xio] [Xid - fjVt) + MiP] (2)

where ~i(t) is the position estimate, V,(t) is the velocity estimate, and Ti, is the position integration

timing rate, Mia is the speed gain, and M5p is the brake bias. The timing of the movement is

positionpn
r G ng estimate :::::::::::::::::::::::::::::: :::::::::::::::::: ::::::

pgposition

initialIn e na .p s t o

desired 
torque

position-o 
zorqv

~current

desired velocity

movement
time

Velociyvloiy ev
payload estimate
sense

Figure 2: Block diagram of a local joint controller. Parameters
in ovals represent neural network outputs. For a robot with N
joints, the complete dynamic multijoint control module of the
neural network controller consists of N distinct local joint con-
trollers.
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governed by T., which in turn depends on the desired movement time. The function u(2i(t)) is the

local movement gating signal defined by

= for -ti{t) * Xid, (3)

0 otherwise.

This function is 1 when the movement mode parameters are to be active and 0 when only the

posture parameters are in effect.

The true velocity estimate d 2ti(t) is simply a constant value over some period of time. However,

this form does not acknowledge the inertial properties of the arm because it presumes a step change

in velocity is possible. The form for )i(t) given above is parabolic and has a symmetrical bell-

shaped profile. The peak value of the parabola is determined by the speed gain Mia which is used

to adjust the speed of the movement. The peak of V,(t) along Ii(t) is set by the brake bias Mip

which effectively shifts the parabola along the time axis so it can generate either braking or

thrusting force at the end of the movement for a smooth stop. This form is more realistic

approximation of the velocity because it only presumes a step change in acceleration is possible.

Alternatively, a cubic or quartic polynomial can be used to provide smooth acceleration at the

expense of increasing the number of parameters.

The position estimate is then used as the reference for a position servo which produces motor

torque according to

, (t) = Pi'M [4t) - x()] +Pip (4)

where xi(t) is the current position of the joint, Pitt is the position servo gain, and Pip is a constant

bias to compensate for external forces such as gravity. This torque term constitutes the posture

mode. In a similar formulation, the movement mode is composed of a velocity servo that is driven

by the velocity estimate according to

4 M.V(t) = Vi't IOf(t) - v0)], (5)

where v,(t) is the current velocity of the joint and Vic is the velocity servo gain.

The total torque signal sent to the motor amplifier, 'Ci(t), is the sum of the torques produced by the

position and velocity servos, with the movement mode term gated by the movement signal
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function:

Ti/t) = -1 Pos(t) + [1i, Mov(t)" U()5 .t))]. (6)

The role of each term has physical significance. The position servo maintains movement timing

and final position accuracy. The velocity servo provides movement stability by thrusting and

braking during the movement to compensate for inertial and dynamic coupling forces.

At the end of the movement phase (signaled by u(.i(t)) going from 1 to 0), the performance of the

movement is observed by each local joint controller. Three measurements are taken:

1. The time when the movement phase ended, denoted by Ti.

2. The position of the joint, xi,.

3. The velocity of the joint, vi,.

If the movement had some instabilities, the arm may still be in motion for some small amount of

time after the movement phase ended. When the arm finally stops moving (under the sole influence

of the posture mode position servo), a fourth measurement is available: the final position of the

joint, xif. These measurements translate into the following error quantities for each local joint

controller:

1. The arrival time error, ATi = Td - Ti.

2. The movement position error, Axim = Xid - Xim"

3. The movement velocity error, Avim = Vid - Vim which equals -vi. since Vid,

the desired velocity at the end of the movement, is 0.

4. The posture position error, Axif = Xid - xi5 .

These errors can be used to adapt the parameters of the local joint controller.

In the most general form, the adaptable parameters are Ti,, Pia, Pip, Via, Mia, and Mip. During

our experiments, both Pic and Vi3 were held constant for simplicity so no error functions were

explored. The error functions for the remaining parameters are:

BTK= ATi (7)

SPt = Axi,, (8)
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= -AVi,,. (9)

and

8 = Axi . (10)

Each adaptable parameter is encoded by a separate neural network. These error functions are used
to update the weights in their respective networks. The basic network model used by all parameters
is an adaptive topographical map that is excited by a fixed bell-shaped activation function centered

at the inputs to the map. The output of the map is the sum of the weighted outputs of the map. This
structure is best illustrated using an example.

The position estimate integration rate (Ti,) depends only on the desired movement time (Td) and

the initial (xio) and final (Xid) positions of the movement. Since these three inputs are independent,

the corresponding map for Ti, needs to have three dimensions. Let W represent the map so Wxi

denotes the neural weight at xio = j, xid = k, and Td = I. Furthermore, let the bell-shaped

activation function be the three-dimensional Gaussian distribution,

Wq, k,1) = Cexp (J-x/0 ) 2 + (k-xd)2 + (I-Td)2]
gk1)-Cep202 (11)

where C is a normalization constant and Y is the half-width. The map output is computed using

Tix = I YI Wjkl g&,k,l). (12)

Given the error signal BTL' the map is adapted using

AWjkI = iq6Tixg(j, k, 1) (13)

where A Wjki is the change in the weight at index position (j, k, 1) and Iq is the learning rate.

The maps for the other parameters are slightly more complex in that there are more inputs. For

example, the posture parameter P~p depends upon the current payload PL and the final positions

of a/l joints. The movement parameters Mij and Mip depend upon the movement time, the current

payload, and the initial and final positions of all joints. In general, the maps for parameters like Mio,
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and Mip could (N+ 2)-dimensional. However, it is not necessary to relate the initial position of

joint i (xio) with the final position of joint n (x,,d). It is important, though, to relate the movement

of joint i (Xio, Xid) with the movement of joint n (xno, xnd). Thus, the (N + 2)-dimensional maps

can be reduced to a set of N two-dimensional maps that relate xio and Xid for each joint and then

have a separate two-dimensional map for the time and payload inputs. The output of all these maps

can be summed together to form the desired parameter, such as Mia. The error value 8 M f is then

applied to all the component maps in the normal way.

2.1.2 Performance Results

For simplicity in our experiments, only two of the six PUMA 260 joints, the shoulder J2 and the

elbow J3, were under the control of the dynamic multijoint neural controller. The remaining four

joints were simply held at their position via a conventional PID (proportional-integral-derivative)

controller. This simplification is valid because these two joints retain all the inertial, coupling, and

gravitational forces that the complete six-joint controller would have to face.

The performance of the dynamic multijoint neural controller is illustrated by the corresponding

video tape that accompanies this report. In this demonstration, the controller learns to move

between four positions in about 25 trials per movement. At the joint level, the movements were

accurate to within 0.1% of the range of each joint Furthermore, the final velocity was within 1%

of the maximum desired joint velocity. This performance exceeds that of conventional dynamic

control methods but unfortunately is comparable to recently developed commercially-available

algorithms that rely on detailed kinematic and dynamic models of the robot [see, for example,

Hanafusa and Hirochika (1985) and Whitcomb et al. (1993)].

Sample movement profiles for the movements in the video tape are shown in Figures 3 and 4 for

the shoulder joint In Figure 3, the position profile as a function of time is plotted for both before

and after training. This profile consists of the position estimate .11(t), which serves as the position

servo reference signal, and the actual position x,(t). The corresponding velocity profiles depicting

9 1(t), the velocity servo reference signal, and v1(t), the actual velocity, are shown in Figure 4. The

input parameters forthis movement are: x10 = 1,Xld = O, Td = 0.6,and PL = 0.Note thatthe

untrained controller exhibits significant end-point instability by the oscillations at the end of the

movement. The sharp change in velocity for this case, shown in the top curve of Figure 4, is due

to the movement gating signal u(21(t)) turning off. Since gravity is present, the final position for
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UNTRAINED MOVEMENT: POSITION PROFILE

po$ition Oervd, ref erbnce':-
.~~2 0.8I!actLia poftitoni~~.

CA 0.4__ _ _ _

0

S0.80
0

0

z 0.2

-0.0 .......

0.0 0.1 .4 2. 0.3 104 0.5 0. .6 0.7 20.

Time (sec)

FigureRINE MOE:NT SampleO mvmnprflshoitePROFItinEs

These pofilesare taen fro one o the~ mo ements mae byth
velocity~~apua prfiesar son n igre4

-1.8



Symbus Technology Autonomous Neural Network Controllers

UNTRAINED MOVEMENT: VELOCITY PROFILE
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TRAINING EVOLUTION: TOTAL LEARNING ERROR
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Figure 5: Evolution of the total learning error in which different
movement parameters are adapted in stages to illustrate the
learning process.

the untrained movement is below the desired position. After training, the controller produces

smooth, stable, and accurate movements.

The training process is illustrated in Figures 5 through 9. Although all parameters can be adapted

concurrently, the training process depicted in these curves adapts different parameters in stages to

study how performance improves with learning. Figure 5 shows the evolution of the total learning

error, defined by

sta - O(TI"+" SP, + SMIG + 8 MD) (14)

at each trial, during this adaptation. The level or shallow-sloped regions of the total learning error

curve indicate that the parameters being adapted in this stage are converging to steady-state values.

In the first learning stage, only the timing rate Ti, and the posture bias Pip for both joints are

allowed to adapt. They remain adaptable during the entire learning process. As shown in Figures

6 and 7, these parameters rapidly converge in about 20 trials. Note that during these trials, the
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TRAINING EVOLUTION: TIMING RATE
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Figure 6: Adaptation evolution of the timing rate Ti. for both
joints. The upper plot shows the TU values and the lower plot
shows the learning error 8r.
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TRAINING EVOLUTION: POSTURE BIAS

0.14 r r ,

0.12t

S 0 .10 .... . L, - - - -- -_.._-__.. . ... . . . . .C
M0.1

"• 0.08
0
a- n fti

• 0.06
N 0.04 r--t ,-!--V •-4 .. •.... ----I -i •

0 ;shoulder joint
o elbow joint0.02

0.00 ,Li , , i ,
0 20 40 60 80 100 120 140

Learning Trial

TRAINING EVOLUTION: POSTURE BIAS ERROR

0.16 ,

0.14 - ..
-• 0.12 i

0.1 __ shoukr ointl0.10 - -eltxw joint
o 0.08

o 0.06
(L 0.04

o 0.02 • i i i !
0

-0.04 t !

-0.06 i1i
0 20 40 60 80 100 120 140

Learning Trial

Figure 7: Adaptation evolution of the posture bias Pip for both
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-15-



Symbus Technology Autonomous Neural Network Controllers

TRAINING EVOLUTION: SPEED GAIN
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Figure 8: Adaptation evolution of the speed gain Mic for both
joints. The upper plot shows the M values and the lower plot
shows the learning error
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TRAINING EVOLUTION: BRAKE BIAS
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learning errors for the speed gain and the brake bias are relative large and grow slightly as the

timing rate and posture bias converge. This growth is due to the timing rate increasing, which

results in a faster and more unstable movement.

As shown in Figure 8, the speed gain Mi, is allowed to adapt after trial 27 in the next learning

stage. The speed gain converges rapidly initially and quickly slows to more gradual changes. This

causes the movement to become more smooth and have velocity profile that is more bell-shaped.

As a result, the brake bias error decreases, as shown in Figure 9. However, because the movement

is faster, the joints overshoot more than the previous stage. Because of friction, the joints now stop

moving past the desired position, so the posture bias must decrease to compensate (Figure 7).

In the final learning stage, the adaptation of the brake bias Mip is enabled after trial 52. The brake

bias gradual builds up (Figure 9), reducing the overshoot. The speed gain needs to increase slightly

to make the joints reach their desired positions now that additional braking is available (Figure 8).

Also, the posture bias readjusts to commodate the changes in the speed gain and brake bias (Figure

7). In both the second and third learning stages, the timing rate remains constant because its error

condition does not depend upon the position or velocity of the joints. At the end of the adaptation,

the movements are smooth, stable, and accurate, just like the profiles shown in the lower plots of

Figures 3 and 4.

This three-stage learning process could be done in one stage by adapting all parameters in parallel.

Larger learning rates selected independently for each parameter could also decrease convergence

time. However, if the learning rates become too large, the adaptation can become unstable, thus

preventing the parameters from converging.

2.2 Part Insertion Neural Controller

2.2.1 Design Description

The part insertion process involves two control phases, first finding the hole (thefind-hole phase)

and then guiding the part into the hole (the guide-part phase). Two phases are needed because the

meaning of the same force/torque feedback can be different between them. In order to provide

active compliance for both phases, the part insertion neural controller must learn to generate

corrective movements given sets of force/torque sensations and the current control phase.

Furthermore, the controller must be able to switch between phases so that the part can be inserted

smoothly and continuously.

A block diagram of the part insertion neural controller is shown in Figure 10. It is composed of five

-18-



Symbus Technology Autonomous Neural Network Controllers

sequencer

current desired 'phase
position position select ror

| I | [ /• find-hole network --

positionr

command

[arm controller relative
motor force/torque

Motor• sense
torquef

command
sensoroue forcefeedback

Figure 10: Block diagram of the part insertion neural controller.

components: a sequencer, an arm controller, an interface for the force/torque sensor, and two
mapping neural networks, one for each control phase. The sequencer coordinates the operation of

all the components and generates the necessary movement commands in terms of the desired joint

positions Xd(t) for all joints. The arm controller moves the arm to the most recent commanded

position by computing the required motor torque signals c(t) for all joints. Our dynamic multijoint

neural controller could be used as the arm controller here. The force/torque feedback interface

converts the 6 absolute force and torque values F(t) from the force/torque sensor into relative

deviations from the expected force/torque values AF(t). Both neural networks store a mapping

from AF(t) to the appropriate corrective movement expressed as a relative change in the desired
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position for each joint, AXd(t). However, only one network can be selected by the sequencer at a

time. When the find-hole network is active, the relative position change is used to find the hole

opening. Similarly, the AXdt) from the guide-part network is used to guide the part into the hole

when that phase is active.

The part insertion neural controller has two modes, learning and performance. The function of the
learning mode is to train the neural networks using the controller's experience with actual force/

torque signals. Performance mode is simply the part insertion process. Both modes must

accommodate the two control phases. The learning mode for both phases is structurally similar but

differs in the sequencer operation. For a smooth insertion, the performance mode must provide a

mechanism for switching between the control phases.

To train the guide-part network, the initial learning experience for the controller cannot come from

inserting a part into its hole since the hole location is not precisely known. Instead, the learning

experience comes from simply reversing the insertion process. First, the part is manually placed

into its destination hole and the robot arm is moved so the part can be gripped. Let the positions of

the arm joints at this starting position be denoted by X0. Then the sequencer explores how to

remove the part by generating random but nearby position commands Xd(t). As the arm controller

moves the arm with the part held by the gripper, the force/torque feedback interface computes the

force/torque deviation AF(t) with respect to the initial force/torque values (the expected values).

When the magnitude of the deviation vector IAF(t)I exceeds a threshold AFm., the sequencer

commands the arm to stop at its current position and the guide-part network is trained to associate

the current force/torque deviation AF(t) with the relative position vector which will decrease the

force/torque deviation. This vector is the difference between the current reference position X0 and

the actual position vector X(t) when the force threshold was reached. The learning error for the

network is thus

8(t) = X- X(t) (15)

when the event

[AF(t)l a AF•m, (16)

first occurs. When the arm reaches an exploratory position Xl(t) with a minimum value for IAF(t)I,

this position is set to be the new reference position X0 . By iterating this procedure, the reference

-20-



Symbus Technology Autonomous Neural Network Controllers

position X0 is slowly incremented in such a way that the part is removed from its hole.

Furthermore, by exploring several nearby positions Xd(t), the guide-part network can be trained in

one pass at pulling the part out of its hole.

Training the find-hole network follows a different procedure. With the part being grasped by the

gripper, the arm is positioned so that the part is in the correct position to enter the hole. This

position is set to be the reference position X0 for this training. The sequencer then commands the

arm to move in random directions that are toward the hole. When the force/torque deviation

magnitude IAF(t)I reaches the threshold AFma, the find-hole network is trained to associate AF(t)

with the current relative position that will return the arm to X0 for another attempt at finding the

hole. The learning error for this case is

8(t) = X- X(t) (17)

when the event

iAF(OI > Ž ma (18)

first occurs, the same error condition that is used to train the guide-part network.

In performance mode, the sequencer starts in the find-hole control phase and simply commands the

arm (with the part in its gripper) to move along a preprogrammed path to the expected position for

the hole. If the hole has moved slightly, the part will make contact with the edge of the hole, thereby

generating a nonzero force/torque deviation signal AF(t). When IAF(t)I Ž AFro, the find-hole

network is accessed to produce the relative position offset AXd(t). The arm is commanded to move

to the absolute position

Xd(t + 1) = X( + AXd) (19)

for the next attempt at inserting the part into the hole. This process is repeated until the part enters

the hole. With only a force/torque sensor available and no kinematic model of the robot, this

determination can be made by monitoring one or more joint positions for crossing preset values.

This condition imposes one limit on the range of variability on the hole position.

2.2.2 Performance Results

The performance of the part insertion neural controller is demonstrated by the corresponding video

tape that accompanies this report. In the demonstrations, the test part is a cylindrical peg with a
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rounded tip. It has a diameter of 0.97 inch and a length of 6 inches, 2 inches of which are to be

inserted into a 1.06 inch diameter hole. The resulting insertion tolerance is about 0.045 inch or

about 5% of the hole diameter. At the midpoint of the peg are two slots so that the peg could be

grasped reliably by a parallel-finger gripper. In our test experiments, the position of the centerpoint

of the hole opening could vary up to about one quarter of the hole's diameter (approximately 0.25

inch). Furthermore, the angular orientation of the hole axis could deviate up to ±:100. The

demonstrations show the part insertion neural controller successfully controlling the PUMA 260

robot inserting the peg into the hole under various hole placements and orientations. Since it is not

a complete prototype yet, the specifications on the range of active compliance it offers are not

available. We plan on using the video tape as marketing tool for pursuing prospective customers of

this technology.

2.2.3 Remaining Problems

By its nature, the force/torque sense is a local feedback mechanism that is usable only when the

part is in contact with the hole. If the hole location is moved too far away from its expected

position, the force/torque signals cannot be used during the find-hole phase because they no longer

are unique. A more global sensing mechanism is needed such as a vision system. The vision system

can also be used to determine when the part actually enters the hole much more reliably than using

any preset joint positions.

Another problem that can arise by using solely force/torque senses to find the hole opening is that

the same force/torque signals can arise in two different situations, each of which requires a different

corrective movement. An example of this condition is illustrated in Figure 11. In both situations,

the location of the hole is shifted slightly to the left. However, the hole orientations are opposite.

The sensed force/torque signals indicate that the lower portion of the part is being pushed to the

left slightly. The desired corrective movements, though, are in opposite directions to make the part

have the proper orientation. For small angular variations in the orientation, the guide-part mode can
handle this case once the part is in the hole more deeply. However, for large angular orientations,

the part could become jammed and prevent a successful insertion. As a temporary solution to this

problem, we use two force/torque readings obtained from trying to insert the part using two known

adjacent starting points. This double sense provides contextual information about the location and

orientation of the hole. In effect, it is a simple first-order approximation of the spatial gradient for

entering the hole. A better way to resolve this problem is to use a vision system to incorporate a

sense of the orientation of the hole opening and allow this sense to be associated with the proper

orientation for the part. This training could be accomplished using a self-consistent learning
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Figure 11: Example situation when the force/torque signals are
the same but the desired corrective movement is different.

algorithm such as Kuperstein's INFANT model (1988, 1991).

Alternatively, this ambiguity problem could be solved by introducing joint-level active compliance

into the arm controller. In this case, any change in ajoint's position due to a mismatch in the part's

orientation could be compensated for by changing the target position for that joint to be its current

position. Instead of using a position discrepancy, joint-level active compliance can also be sensed

by using individual force sensors on each joint, such as Hall-effect current sensors for each motor.

Given enough sensitivity on the individual joint force sensors, the force/torque sensor at the gripper

may not even be needed.

3. Commercialization

Symbus Technology has a number of criteria we use to evaluate the commercial potential for

bringing a product to market:

1. The benefit that the product offers should fill a large need and have substantial

value.

2. The product should be profitable, which means that the value the customer per-

ceives of the product is higher than the cost to build it.
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3. There should not be many competitors for the benefit that the product offers the

customer.

4. Product development should be financed from available sources.

Using these criteria we talked to informed customer prospects in the automation market to get some

market feedback about our product concept in part insertion. We made a video tape of our part
insertion demonstration and mailed it to the following companies:

1. ABB Robotics - robot manufacturer.

2. Advanced Robotics Research - robot reseller and controller manufacturer.

3. JR3 - force-torque sensor manufacturer.

4. ATI - force-torque sensor manufacturer.

5. Allen Bradley Co. - industrial control manufacturer.

6. Precision Robots Inc. - robot manufacturer.

7. Harbor Research - robot market consultant.

8. Trellis - robot software manufacturer.

From the companies that we talked to, we got the following feedback: Our technology fills the need
of automatically inserting parts in a highly variable environments. The benefits we are offering
include increasing the scope of variability beyond currently available methods in existing
applications and creating new applications that can only be accomplished by accommodating
higher variability of misalignment than is possible today. Today's possible work-arounds include
jiggling the part into place and allowing a passive compliant device to accommodate the
misalignment betweon the part and the insertion. The largest market segments that can use our
benefit include the military which has special requirements for loading ammunition and the service
market because the interactions between robots and the environment are variable and not easily

constrained.

There are already a number of obstacles to market. One obstacle is creating a new market which
requires expensive missionary work to educate possible customers. Another obstacle is that the
product's capability requires enabling technology that is not commonly available. This creates
delays to product distribution. In our case of adaptive part insertion in the service market, the

enabling technology is a more developed infrastructure of associated adaptive functions for
moving, reaching, picking, placing, tracking and catching. For the robot service market to grow
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large, all of these functions in addition to part insertion need to interact and work together.

Since our product will be software, the cost of manufacturing the product is low, but the

development costs are high. Once developed, the product would have high profit margins. We have

no knowledge of commercial competitors for the benefit we are offering.

We will continue to contact more companies, especially in the military, robot system integration

and service robot markets. Our next step is to get a clear view of the scope and size of the part

insertion market and then develop commercial relationships with companies that will help us in the

appropriate distribution channel in the market.

4. Summary and Conclusions

We have developed two autonomous neural network controllers for allowing industrial robots to

operate in highly variable environments. These controllers address variability at both the

movement and task levels. They learn appropriate performance by experience. In addition, they can

learn continuously so that the controllers can adapt to slowly varying changes in the robot and

operating environment.

For movement-level variability, our dynamic multijoint neural controller can learn to move

variable payloads from one point to another with a high degree of accuracy and end-point stability

without any knowledge of the robot's kinematics or dynamics. It only requires the number of joints

and their movement range. The performance of the controller is comparable to recently-developed

commercially-available controllers. As a result, this controller will not be pursued as a product to

be sold to robot controller manufacturers because it does not offer enough benefits for them to

switch control methodologies. However, the dynamic multijoint neural controller may be useful for

other process control applications. Since it is model independent, it could be applied to inertial

control problems such as temperature control and fluid control.

For task-level variability, our part insertion neural controller demonstrates the feasibility of having

an autonomous controller learn to use force/torque feedback to guide a part insertion task with

unconstrained alignment. In this case, the location and orientation for the part destination can vary

over consecutive trials. This capability can give existing robots a much larger range of compliance

than existing methods (jiggling the part oc using remote center of compliance fixtures to hold the

part). For wider variations in the hole location, a more global sensing system such as vision could

be incorporated into the part insertion neural controller.

The technology demonstrated by our autonomous neural controllers should be very beneficial for
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robot controller manufacturers. It can increase the functionality of existing robots and expand the

range of robot applications. Furthermore, as more robots are used in unconstrained environments

such as in the area of service robotics, our technology will be crucial for making the robots more

productive and efficient.

Symbus has begun it initial market research effort in determining the size and scope of the potential
market in active compliance for part insertion. Initial market feedback on a video tape

demonstration of our capabilities is indeterminate. We will continue to contact more companies,

especially in the military, robot system integration and service robot markets.
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